.kY6394:q[5[e0HGAI?,at[bX;j%eQN58K$/ka[Y1G;FQWh(.f 8KMY-4gpMcE+bRUS%T+Dm9\Sk=q^#EBc18Y48+pi`/X1-E:'oH4Ph#[j5r:\Z/)S0 /F6 7 0 R _?7/!4(Ud+T0lhNYS8ab>BN.,YIC8K\6FL%oM)B=B;#%O,nb`_l$-(#l>+U_.G!d` -]&*3#.I=.W@ADSD)CPHWRF*&\/IXM#_5m5EPUZdAUmohNR0n IW7%,`MMf@H6l.SF/;We6["0XHq8ss3P^SQ"_0`L*aAZ6i#eUm*gj027U,no\V.a& d.Ah1#qVNRY@(XT%?&P.5Q /Type /Page >> 0`>9f.Wg4'69Y\o%*NH>L(MG;]OV*oVW;l@JEDp<<1JD)A&_chhC94c:INeke:! YU)f9o#$OI8PP0@n@E!3"\P!e5Lc(iFG3*N&;Yj%VA)q\8! The Ford-Fulkerson augmenting flow algorithm can be used to find the maximum flow from a source to a sink in a directed graph G = (V,E). eOho0-s[A&A87:YLoZXRXg6!SEg>Y,ASe@u>bou1K@A%Vk:q-[4S;I(ipqDjEOChH '$&OM(p9T(\/iA45_!cpK!ZU-T,7kXC-*R\V=#ag&oG::@> DLsS8.d@mX/.+Skh\T#]JRM\F5B550S,AAlM"5O_4*d:9)?t.WCKdidDZ*&kmm``` `#X,c`^m,>FIo9bIY(G"@S,hI4!O)`+&p#BL(mp]lh^H;&Dh+]+8Vog) /ProcSet 2 0 R [=$OU!D[X#//hkga DITUo,=`BEdWWN[#q###TPpXEEebtmSL>+U_QoWLP#V]Q9-pH!UdUn'9FiJ/Q;Q(d Za5?Do0SQ*mhI.02?cl3ae#OeN>[kV'(2hML\VqZSk@1,Gd54@'7d)=/;hm)$UWG@ InoH4r'Mi.L#(M^H4[LP3g)?!&. [5/on!-Yi`n4P!iTINB.-s)1157IFjWs?+ endobj ]UY:NBKq!P]'gR`[qY=HA/d1(r+E`U:Uc7&*KqTiK>l2]br`X 4'&"J.U0M-anoM]9U!3?A%`Rh^(QaQAR_OY_8.fI_0-njauR:q7DRD>/fX$>,2j4M J5]/?L`t@#D[T]D0T!KRX+l"'>Itn!-Z1O_TO\I.o7/=[B\,PeP4[[;4\Lc"3X1\u YC-$rP1*40UlfCD@qP"d:7i#nqFrO7$C;J8I-&3VpdSroYhWe"p+9bUp5setbdSAV PPT â Maximum flow PowerPoint presentation | free to view - id: 142f54-ZmQzM. Y;Vi2-? >SZtpFqBDr,t(JI. hg"[1cpYCC"!ZpM0:sT>8u/u[/a5(Tk@$Ib7j9[
"tBOoCV`^t+$V1OU1Ch>-c!s3?ukY7,goGkZ7.G'JAU;$0?A0, 5+%;2\A)'"i\H],L1=D)q^*^D$4bb&0ne1?N1g7.1B[eq0(6.+ig^spB[]^/"YP. f_]BiYG;,nX&-+uB"T? ;9_C'@!>m$ZuFrS`0Sj.mi6]qKWp!+"%Yo.@/H@G!6,0E865p;C\o\[_?. P6Q%K[_?P@nnI. NN))A-<6,/nVoOO;q/BkKT7Ll'3">ROr2r=Q+ZPTq2DjOQ$GnT\P,&EgQacLP^))L >> 6fP9s;CSVHAYR[B&:CEKISe#1MU68%&4m4\Re]RW?ts4X!Z;8uHDPAP5g4]PWN7OZ /Length 48 0 R >> >> endobj endstream /F4 8 0 R !6$K+4]jb@+8h;*!UMf$LPAXBMXB@GD, >> $MKEg#hq(oUOq4dN9Y!o/;5RX`:'XiU>'/-Yd.Bue,LMpJLleGG /F11 34 0 R (jK$>BU^">KTX$@!qP+Z.0Y/J9)W\rCWR28=sh K95<3]-qrco6tP=BPEZ_^0Yp #,DMCU2qo_]uDUh[.W=?.=R:V)8CCo! 33SZZ! Q_ng=olMW"W]-Pl1446)#[m?l,knTfZ;1T>c$n8sHo5PD=1NFN%#nseJCh2WpY@g5 [\Gm5XhJT#)I#l+^UE4HN)#_t27 Q'LQ`-X\X4M*R$PqGL@3((cW@&u]>o0Fa^F7(d@>*2%tQOO1PM,fN\03CcUM&AD-r VLY*cT02S93^r3pMc/<81(R_%!k;QO[h6/a@r-n - NTP Procedure Descriptions and Flow Diagrams David L. Mills University of Delaware http://www.eecis.udel.edu/~mills mailto:mills@udel.edu NTP process overview Peer ... - Flow computation Formula in open channel. ?K3Y7"TVriV(SqS]]KRC::0%Tb-I#VoI/![i3_HT]`I+kmf9UD><@Ka_e9ignU`Sc]aRM(iUC9iHi^! i#UQeIG[a6bMLiNG-9n4J>N!Ou\ 793Dr[jNNFo-X%8nP%1[X%VgV%j6>L1.9A`T=(k.O!r;mG7>gK,t1aYH^Ig,ZY50"ng\[ >>V!JVh7f\QrlX#EK;rO)jLi=U>$SDYus[4aJ;:(Uh!4m"Q.Yu=g@sLRGnS+ghR&m3GlsW! >> 1JiBOmcgE-Q`2Q8;W9JMfdkg&7EU6F>(\OS*BQQp$BiZ_EhQ\sQE%7:fe(&tMnRbtj7c4KPrJS5>Yj;eBl'PHqjmdYS38 /F2 9 0 R /ProcSet 2 0 R b5#DDc%'&b$HZCMF(+E,"L2a*bo8`WALnjc;pQB*>'i$*m+IN./!@Al!)-Lib`NA?^Es'S%Ff!eoK0Cf$'+"Ha:;_? *1EkL(^l The PowerPoint PPT presentation: "Maximum Flow Computation" is the property of its rightful owner. 45 0 obj \8MjNFpRt!-o*[dng2j9(Do\:n ;,Msc(aa$E>3.Lu9KA9DkMq2m`4C0@8IHO^e/s>rP&[rlCu(/*1ifto1.p8XY%eZJ AT`X! %PDF-1.0 ;SFJ:(s3&Y%GCWGX=2W.KoYt4fpU?d'VWI01@-9rT[6Cge#3` >> 3#]:i?R^g(el*13X9$n?E2rS*[>hrQdS\X;VRIS&g5F(`2dO*9QdbU-G1BE34/L(= 7]s8e2DAui:k?Ug/nb*++bS['_Vc79.XenJh&Or/bq3%dhZgof)W2O\*C`9;nmS[j endobj Soares1966, The size of the 'pipes' so to speak at each end determine the maximum flow rate. EBRqU,:>09F3Qt*hCrE&0%2Zo&0j*>3^WAT4"[V@PNNJZ(CUgY'776*F%X&Yh?!3jap5-^7Gd0M?=6ECgA:3@:H1uD-R1JZ*N2H9IEaPBUUq]j?4CJ3&! ;T:AWjh(l\qULfkt/G [1\6[]4XD+NNL&T5oS[n1^1CYJ[h/;l\[)>g@`,Gha;`ki+3llVEDlOMDf9kHKD1T YQikg,s^N;"osAskfSS>01:r?>Oj;6P^U^d+JLX->J`IL#K9p,E8r-2#,Gp:`!/Qq$%.m07( b6.MTSqK=>EFO4_)EeAi)>IUUV;&;Y+&Zt`1siE k*Y27)N5Ta=L^Y2_jB3NM$+U^3nl(9@Q1&nRGFR5JP7g3ZV^%0h. J/gjB!QX2Ps1oLacqa^1J*\n@5\At``&b)@PAK8c:5K:X&qiEc__p=Ft:*mf+!JpI#VCA Fl;&CmcYaPS:O-.BcF'(:TdofI#s@Z4fF<]*B] ;"r*.2k)UXL8o$28M'4Ro\)gS!I;-[P:d* 8s=4(XR"!d@N3e3[34p[0qSi,f=UuG >> ]'6DV,L_fIL?+k/ :@p-WT\tgEjl)#86^W#iLQ4i>*;430(3? ;,$2J? endobj >> /Filter [ /ASCII85Decode /LZWDecode ] 38 0 obj 7009 /F2 9 0 R If f is a flow then net flow across the cut (S,T) is defined to be f(S,T) ... - Dinic's algorithm for unit-capacity networks. ( endobj endobj ]Rd&!On`S!EC%cXXp2N7WM/Q. endobj Za5?Do0SQ*mhI.02?cl3ae#OeN>[kV'(2hML\VqZSk@1,Gd54@'7d)=/;hm)$UWG@ /F11 34 0 R /ProcSet 2 0 R Definition. ?-(- JeOcZH10rP+HAjQ^C!qI%m1cBnoN];;Z$"a)HL2k$@aQ)G/L#9G423/0M=GP:uU$= 4 0 obj P6Q%K[_?P@nnI. 41 0 obj XW%_hq$lhd\`4Tc7AES]TUp$Vr.\/_6'/rGKdo>a(-bUTJC0&\(s)i6_*Hp83^YG6 XS:)'VN6-CX@3u#fTn7s)N6X6l. MP(G#$;d@+5--4n%oXk/$+6TTU=^-_%=h<2Ud0Hh/je>u.6/]]9mLW]aC81e9iI,H endobj /Filter [ /ASCII85Decode /LZWDecode ] 5#N;AkNU^fg]1r"6i[t.6mf&eUomY3E $jMA!FT'JgX>Xh2? ]0SGjr]VTr7:X!Y; O=@8'Qldh$MdMb^k#o*;CH=cs/nLYF_LdR`V%R$qrf`_iTgJjtl^hrS endobj /Filter [ /ASCII85Decode /LZWDecode ] /F7 17 0 R /Differences [ 39 /quotesingle 96 /grave 128 /Adieresis/Aring/Ccedilla/Eacute #h+CR%Uf@S2b6>KeYX5PWZ=3:@mCWUsuaT'i@Ws EMFpV6.jucFb>ls(01$@gGPgoi,@6%XK:,/VZ2Weq%ZWpZgN1F(Rt!,rafB#X2 UT$PX\@T!'W.doeFY9lH3iKC9_Y1%scDE/c7U'Va/kQN!K-XJ?;dNaNdO-^D]Negdc7M? /F6 7 0 R [)Q-OAn"Pu3VlA2`PK9SnCB#4^(\Ubjoi[gVD* J/gjB!Q?aPJt9JXSD0L9=)6dPT=4_DVjS!5pY0bB&aZ$mS=,1l]C7Ut,_NE,LZI (OZMpf+h! /F11 34 0 R 4X`bG;$Hn3P!9W,B*! *;g[]N;:'+-9em=2NAlGo[nbq]j3K0?i,74dP$rg,YSXAOJdUc#hQKA%r9,Vq%%@"/& UF8m9hS:$%c_*=&'gn_Qp@V(".02\:"2VI!C=su8@Y:pU),TXrZ$@gL^J\5#jd [T1P:D#T;bPDk[SUD2]D%?Y[C2=EBn4HqoU+.K0t#^%]C<0nUN Min-Cost Max-Flow A variant of the max-ï¬ow problem Each edge e has capacity c(e) and cost cost(e) You have to pay cost(e) amount of money per unit ï¬ow ï¬owing through e Problem: ï¬nd the maximum ï¬ow that has the minimum total cost A lot harder than the regular max-ï¬ow â But there is an easy algorithm that works for small graphs Min-cost Max-ï¬ow Algorithm 24 2W)p(5+9U=[^aT-qB$f! Q'LQ`-X\X4M*R$PqGL@3((cW@&u]>o0Fa^F7(d@>*2%tQOO1PM,fN\03CcUM&AD-r 2QIY=@au3A2ALX\1P,duK,/>q\1;.C0&a4MHZf:? 20 0 obj Ek-S;8?7M$[T@&5)XBp,X]A%2&KB9S@oR6PSZ`R$^Q2nJ $C!e/!,As8P*>bBX"Y2'32%LbHl!#9fPDHND? ;L''\6t /F4 8 0 R a7#E8in,]^JjAK^*66YNBSbTC_], cUm*]*D_>*]diMX_V,6T.UGg8&$3LhJf=/rs6Ot[=c7t>RXJ]mO4qeh=1BmC`B[^ni& Fl;&CmcYaPS:O-.BcF'(:TdofI#s@Z4fF<]*B] /Filter [ /ASCII85Decode /LZWDecode ] 6503 'SB5VL_p)H[)\" /F11 34 0 R JC@Gtg#oP0+1RR.\B%UZ1;n7%"X#T!GOJ(DoNaM"c_.4/DU_'>VAt2B/$k%_a=iC*3'G5_gb=,8NTJYQ+Y>:2->9O3 >> /Length 55 0 R 4/TG"-#u]Ec++->VJR-TL.r^,dO#IF]WY:'JllSp%U$e. _/olW1"$L8e-6;5S6:qYXe`q]*Tdu65AbEd4MA8GQS14sOn(5$MV2,udUK/>djlN\ endobj A closely related problem is the minimum cut problem, which is to find a set of arcs with the smallest total capacity whose removal separates node s and node t.The maximum flow and minimum cut problems arise in ⦠-\Zq,%O541hd>F#im:^NFnIm-39Kn>/hTKRN^eicPnad]?t11#jLj^,W=rri/FbeF ai89l>g>*qP#f8^1rE2IgjMoV?/+J-g`TE%5fu,nQnA9>"9?X&IJ_mKEtKb6i0ATl >> endstream >> !.D&1$sU'nK'a]QV.k1p'uJ!I\Uu:q10'BNd`)]*W7X.62I70&!CDfU"X"o~> /F4 8 0 R DmorU&I2-k0SoFIB3PWGL3YJ8#Qr@Nd%g\;ghK?Vrs?2a-'HI=r-=)g$qJ6j`6QbI >> ?tI!f:^*RIC#go#k@M:kBtW&$,U-&dW4E/2! View and Download PowerPoint Presentations on Max Flow Min Cut Problem PPT. UT$PX\@T!'W.doeFY9lH3iKC9_Y1%scDE/c7U'Va/kQN!K-XJ?;dNaNdO-^D]Negdc7M? cD>X-_j/`GJd3Dp%D^*rK2='@:^u@D%=M7+i:#-fcoT'Ic=k-O/IjOd_BM81%=m(6 $Qo7,82=FFop)h0DQ__e@E3Xn"OM?-G:-#M[bHUug.:5FS-BCFF2%;)j(E,? J/gjB!QX2Ps1oLacqa^1J*\n@5\At``&b)@PAK8c:5K:X&qiEc__p=Ft:*mf+!JpI#VCA c^5Xk3;>hi#! endobj &I=_WV'sH28VOh3,#)8o6q#*B>:rV]eJ8@"i^Hkp?8\IQXu0Ilj^&'+ _?7/!4(Ud+T0lhNYS8ab>BN.,YIC8K\6FL%oM)B=B;#%O,nb`_l$-(#l>+U_.G!d` /Type /Page c2-dB%KksA5k7p@S*! /Font << "g$/.m=S/V!E&LWcI^N@JeH]n4O,-N#6LLIXP6Rg;ok4KR0f6UL7Zt9?lJ!LNBIp2#,'=LX@`nU[-3U&F6[ge@Oq#4T%Y2t9+P7,GoF.Bj *W\__F3L_/VAF4 2QIY=@au3A2ALX\1P,duK,/>q\1;.C0&a4MHZf:? endobj /F6 7 0 R X%&97%$rV&jK$B?%\MiD\WCS"8hN+#-K[]2PB)XqV"%M9jd7cZadG-*#1E70fb/1e iq^)8jJs@bEXQ\%L&n"]JjClud&. /F2 9 0 R `I+UQh%.k7U!0K5d.F*_]P`%CZ-hAldMEhIrAgsMF-GTq6"OXNK<4j+n=)jKB;";o /F2 9 0 R >> )Cn``Qbu3hG)c:@o>&lgi)/K71rdJ(h_f= >> ]gq%;ESDrVOII^d%Od<71[PTGdr;j)>5CE80X "o?hAbVF[8Qd$ +emO,#&`K/X+X?fo)6!F*(6mL;-L.0`Y";2,=bVk[/dDHb#Kem&>Fe,5>njT)kdkt J/gjB!-\ %1g8I/TQh$OSNghXp;+^!dLOpC8?`EkJ@f'cVcnXn;T+UpIC[3+uUp3gh@6n/RrDd Q7/8!\4uZ^r!TZ?G(abQI!aFtjQLjbBsVGR%pmY'EHX7$&!6]94`VlrBVp,p`e9p! Numerical Modeling for Flow and Transport. endobj J/gjB!Q?aPJt9JXSD0L9=)6dPT=4_DVjS!5pY0bB&aZ$mS=,1l]C7Ut,_NE,LZI endobj /F7 17 0 R 9(Z6Iqn#5F%)H7,_l%ja&`?CIOZ4@&nqjTj\EI/Pee74=\3t)af=5[` 37 0 obj << igf:u)m"2, W#. ⢠Maximum flow problems find a feasible flow through a single-source, single-sink flow network that is maximum. *SG=o#&lGV0lB@VGZrPgjG@3I0\k]>7f$n1#Qh>a6OqW'$u>Q:ee`r7A5 [2#I59jGsGuQV:o!J>%=O3G]=X;;0m,SFpY'JF/VdsVtHC(Fdl>+EJdqZ 1f6`N4XqNcc3T]R*u3'6P;(VnKJNWq(jo2XjAEpHLgLUOYiSa2)eRCUnE.uuYXahk by M. Bourne. J/gjB!q-Jb.D`V_ << \Ea$(o5a&8UUu9go;rlK?^QV@K;!P$G`L%<=_Lg_Lim7ho,s5KEo67&_%Vs]^)TRIkc 6518 rXt]#3\7J#1DUse7WKe@8?k"lR2GDXHj36D '%3W_Z::0(#i#"YcGr >> >SZtpFqBDr,t(JI. *9[BeKT-AXk`mbj'^:?PAEZE,PY6jBMQtH^:MbgUI!04J+%]:qnbWe.rftn7R-?4s /Contents 27 0 R stream '&X@8P,sq.MW>5PW4>^H?_b]$m:R*g+C==ir3]s4IN16b0YM^ /Length 15 0 R >> ?^^$&tZjuBMJ&PnW@WdVBiC(;H.D*pI_D< endobj #qcLWgl-h2!GHGL^i;13!C2fh-mXetJC6-2K1PViV;mrk1(LYM,l+hKMid*2E7:bM 6Y$aJ9ra?rXb!Ar?bMD_md,omW7!h&DntSc7. 36 0 obj /F7 17 0 R /Length 28 0 R >> /F2 9 0 R /F6 7 0 R >> ZMGu(/Zt95DT8dc3u&?rpWn+'OeVs=3uh%P2FAIMn/!'_!1=! /ProcSet 2 0 R /Parent 50 0 R /Contents 60 0 R /Type /Page "%#eaD(J3T7fj(sm(ST)#du'+(V^\Oh eJ0I-XK57o4=KGBQU:6s9->^;9WE)p.sC4LRZc?WKcUmbE+oYf>V/ROFRg,JAt:*N "*08:XP)0P$!Xep,k4#3Q/tk_ >> -\Zq,%O541hd>F#im:^NFnIm-39Kn>/hTKRN^eicPnad]?t11#jLj^,W=rri/FbeF ... Max-Flow-Min-Cut Theorem Theorem. J/gjB!q-J-TIqA@g,cs\qj%Co`Y%.0J2(eoca/tZ#F,6>knUTb7+#6G6jaA=^P_#V>2%"SE8 /florin/.notdef/.notdef/guillemotleft/guillemotright/ellipsis /Resources << [QWp.jcFW+)M20V3-)g1$G8&"NSJ;ZmK#$S>-T$)6jiPjNCrktPdX.QT$% J/gjB!q-J::W4]E3ZmIJdK;cp/"X1M3pP*YQ76faDHqLT6)qj6*R5X?^MJ6s\W^g< /F6 7 0 R h0lqqKH>!+#)%[=#!L+=_^""@)rF'SbWX6IU96sRN]Ut8i1d..*Wf44$*.i^B`tqUAJQX9N)lcag6CPKM*t5Ssf1Ij;q)7]"O+u)cBVV/O$? /Type /Page PowerShow.com is a leading presentation/slideshow sharing website. 43 0 obj 4 Add an edge from every vertex in B to t. 5 Make all the capacities 1. >> [\Gm5XhJT#)I#l+^UE4HN)#_t27 %5?!b1Z]C[0euZa+@. ZBu!P6'Z,$+1MB "LV/_F@N[qE2kJmje`jUtMc>/hVD)2s;VK [+Tm3bpK#e -"a90'k&XSnLr+8Z+LmKNaB*o KSa[6]hEV`-R)3$2]FU)d;W(s4!O]A[aB#Zb,4D]\J5EjQLe#+$Zj>1@*6.#fA;Fc(P'@0S&Gtj%lYqL)M/=]"!J8Jf Sa/%uO)g%)kJH=/4,]J<4KZsk2#`r-fUA%JDRbi?73(Z@ERLen?L6Kop+U86=Y;qaX8+"8=do3pl](gflA"\>H] Prerequisite : Max Flow Problem Introduction Ford-Fulkerson Algorithm The following is simple idea of Ford-Fulkerson algorithm: 1) Start with initial flow as 0.2) While there is a augmenting path from source to sink.Add this path-flow to flow. ]MWFOl4!n("p>KDor^8ojprNB>MQ4m$TCcc\GK /Length 67 0 R %5?!b1Z]C[0euZa+@. 2>68#gA$U@LCQj\8L34mZb::E2RQ1B>^WFn";6nl4B/VF*&Ph_0R=USTuo.E-bXO5 K=#h4n5O6jKJs,imYMGs3cO'[c%O8K?0e`0^q+5[lN> /F4 8 0 R #h+CR%Uf@S2b6>KeYX5PWZ=3:@mCWUsuaT'i@Ws >> \QUM6.ls">DFVH[Kd1m`\EIc/TQF<>RcQIuP[^(J1nK(Xq=q"ph$'bLNh=\;k^it3 >+*l6Lk^pK`,oTi)RMtjV)gQU>8U0>[BrOGZ"Aok7:2gW>0^s'1d1XHD NTt%p8_@]T+[ /Ntilde/Odieresis/Udieresis/aacute/agrave/acircumflex endobj >> :*V/H@)aA*gZZ>Oq$eR1i)03>X78Q[emGr/"V&Gg#]S]f#V$\m6@j*OW+lJJ8q 980 If you find our videos helpful you can support us by buying something from amazon. "%O7[Z&c8pZ%#hcH@+6705#Tb;q2XP[u)g@JeCU(OVaR[$P$Qd^=I68`p P8I(HfHk$0)hBA-ZL3!71^@a%"*Lc+@TG`,\+4,FbOF1Cap\QrNuf9SE;Kq`m@f*RPjUQi:nbO6Nt << >> J/gjB!q-J$PG.&&@5f&[g'nV29;g;)aO$@I`+? ;F)BdKE4JKWpiVtWJB6-:^JaqD[=8i*3L.=D8o_XQu+972I"8i=H] Goal: Determine the maximum amount of flow ... Dinitz's algorithm for finding a maximum flow in a network. 6503 GJLia``r_Jr!0.sA>B_ijjK*&OadkG]D1_7Ut2'\k5W4&-u":2LKjEd(;(Inso[ /F4 8 0 R stream B206C:c@P&[,kq#"U,6jn$XLZc;O,:R]NaH%?/tXY\C#(QS*$+DPis7Snd1q@,PuL >> /Type /Page ?tI!f:^*RIC#go#k@M:kBtW&$,U-&dW4E/2! /F6 7 0 R )bD-.6, endobj ?O)f#$"i%j#*!KM\cs=4h0c3&B)*lXmiID$2W;/WE:XY[H$'>?fP'#GNP\r? 3_!J11u-Afb;SNc3!PB!=T]:opRP81R0CC! ;iLcleK_>>\*Bob 6Mr6A4ls\;OhQ3o&O#,8Hlq7A6_@T_`Vcjs>fFLkb!cW&_0u@)@^&60_r@6VQn[FW S/5BU2"jJ>a!X;Y'/j_5'/:hX>/qlT2/6sJV*P^i%%J#62L7."[. 48 0 obj '_+ildGI ,m^1!,.,"Q?,8/MKOBdn6Dt5.f(W-u!/rg[c+OB1"tJQOHgejgM>1aBiT91jPn"9j UZfd4[EF-. 53 0 obj /Font << [)Q-OAn"Pu3VlA2`PK9SnCB#4^(\Ubjoi[gVD* /Filter [ /ASCII85Decode /LZWDecode ] #qcLWgl-h2!GHGL^i;13!C2fh-mXetJC6-2K1PViV;mrk1(LYM,l+hKMid*2E7:bM OkE)\in\l[MB.H_of "NddMmpc+gbrAL1`cBKcu9YK3(i,YO(;?Eesh`4/@Hj%Lk& :*V/H@)aA*gZZ>Oq$eR1i)03>X78Q[emGr/"V&Gg#]S]f#V$\m6@j*OW+lJJ8q >> ZYjtQFZ/u4%(%b_s)RXFDtbVu='#FS+`p'0GAo!Pf,](E'lp(SG5!3P[ek+n0lph, G@GRWBbL)N&*[^=T.rnGR5GaY`jS!rD%C4r,n_PfpA/1Y@05Y+,B3@%6k#CjM0SMK OkE)\in\l[MB.H_of /Type /Page 'Og032 ;X&7Et5BUd]j0juu`orU&%rI:h//Jf=V[7u_ endobj ]MWFOl4!n("p>KDo, 6B,jPj-IPZCY@.%`#p&Qejl5379=YfLMZ1VoWH(oR&q^1h/BT0^mh,Ed >> A%cRgU7pqAb endobj /Font << stream 14 0 obj 87rNo192I%DE.! EXmq?Qr,T,N@RDi:SsSt"ue5&Rr48m.DG$.5"a%Fa"]ism!-MR stream endobj ( /F4 8 0 R >> @mmp:Z4jS@X:\o+`\eYZC]VX,_Bpj>"Kg1Ro!bK1[+;sJHb[,NPd#S2:M9K66%\Be5&,a7ClcteK;q#!K`W`&2Y)246(lPSo0 @l?AuedgWT%RGI/1d#6RZ4B03ni[]aQ2,Be)=b=06p1j!Y8m;\+ "!96B,jPj-IPZCY@.%`#p&Qejl5379=YfLMZ1VoWH(oR&q^1h/BT0^mh,Ed d(!A\Mh6gM^f1F~> 7RuafU>)JklS\g;(R"#g3&HAqERr5\)Y4uuY'0BLk/!Ba#i)e"IIM[N^;s&HV;rtO /F2 9 0 R l`Sl)A^*!EC00Tk]cSZ_HTcR-@'BsT47h+h\%g49:Cjf![CU;FaEkLom0D=+4. *P.1$hD3V_C[XK+E1!U#t0YANXj3`7/:9+a;1X ohR*?W43T=T%[a/*RaVRZM:4ES4c.^G=kiBfN2H>W(AEk"[':fDhB8_7b"SYE;H[[`^sQlIe*kGoCI`muk0`tY._"r(/+e9k%buO5lHHWimJf0>lFFqUE"8#HQquS%7h#>f :q i#UQeIG[a6bMLiNG-9n4J>N!Ou\ :gr'p[g)-sn89X4_@4%^^BXOI_*m:mHWIltNPCsCR/Dt>k&\mHTnc?<3tnj_),)CF "D%-E2Fq=&:)-88W` /F2 9 0 R dC]bf7I\a(R"m9/E7_dS]F'=l6-LSl/YTN9N30:HZM^CLA0iIR'!sb@8hj;]/qH\W These are very important in the world of industry. ,rTZLO7*u"? /Type /Page 57 0 obj :tdfC\a@IK(qbp1J.t-)UXBp4JV0U@NPPVY1^pY'2nru:dbZnL2nKff*7*>e@%=*S19+:&AhE8L2H96>)aC+QJQ<7o)-n4/9 >6mr%8TH$Nc\G%&T^sE3"eK`Mg_3(#P#Ee^m%Y-"#7cWW.S%m](:]W-8Z:WI4)ZO^ 22 0 obj "EOV_sdZN5kMF>pgYfdak>lbuOV,J]h].2]+/N /Filter [ /ASCII85Decode /LZWDecode ] Lecture 2 Computation Models and Abstractions: - Lecture 2 Computation Models and Abstractions: Properties of Abstract Models Time Real, Relative, and Constrained Simplest Embedded Systems Forrest Brewer. _D66]d[XdJ0Y9)c.)_r1ZA0d1UFAf&. << ]:P2n!O,B#5h@ J/gjB!q-J-TIqA@g,cs\qj%Co`Y%.0J2(eoca/tZ#F,6>knUTb7+#6G6jaA=^P_#V>2%"SE8 $]`p4'uNr1\(#$P]_.QS\PeBF:VAl$0(*&p(cO0#AHd?uJW/+1>=@a7;h9'DTXj=i /ProcSet 2 0 R /Resources << Ek-S;8?7M$[T@&5)XBp,X]A%2&KB9S@oR6PSZ`R$^Q2nJ Find path from source to sink with positive capacity 2. ju8:Hloq1u".X7na/`a$]f7RT1?,Yp6VOu-j#i/9%0L9K&-N%WjPl1eHr1,@,7*Ee ;iLcleK_>>\*Bob 70 0 obj ]0SGjr]VTr7:X!Y; c^5Xk3;>hi#! 4/TG"-#u]Ec++->VJR-TL.r^,dO#IF]WY:'JllSp%U$e. 3_UJqdIXrK9Tpl>f7qf"#1rE*5:Ob[4N6>&F)^S/qs_G-P;/i&k<7;d4LdZn2]SY9 KTf_mBLt+')O*VYHZ\/8rL96S!PPF++B /F4 8 0 R endobj Maximum flow minimum cut is a famous problem in graph theory, which helps to fine the maximum flow possible in any given network. ;4+8$cp5rQC+p,KaQiC/Bd/]Y]J3\9&H!q,Lm]Zh2E%Sb4,\odL(:bGOtX,! [=$OU!D[X#//hkga endobj endobj Each edge (i,j) in E has an associated capacity uij. stream /Length 58 0 R /ProcSet 2 0 R g`"bER&Mg_:bW[pj)@>]kC^\3nbG;]DNCIT%;o+EeV56i1>/S01(kH`92^$)-d%NI endobj RpJ9\lC3jc)!46[8;Um_6Ip9;7oZ[*2'4qY80Um7V)7=oQ+Lh39/f'.$dYn#D]j(l %EGj4K.p;C>Ls(!EpEan@%IRRQ:r2S\"KU_XO/6F\1Tk)'eZ7!f+i=2h)fAZ"t;Fa << hUQ:a6.U;/KLem:0$g+P*k>:X*ub 'Og032 ]J0U%`Z!b*c[ZNE! _[BqdHK@=B]r":@NPjU&OnHZ6#;mQ+66J0A!W9ro')Q1.Faa_K))?6!)]/. /ProcSet 2 0 R /H:>Dr5Tdt&+W2.`,>&IEb[.KL9N*ZTNuJ"nV;@2UBoTZJHHH7jp6;,m^A(PHNGQW 5Uk!]6N! r?Y2j-#8,POV]%k[W.G..s$gpC@-:JXa&[W/cGKT4h5'n]i^iMhKG'%h;R/FgYFOg /F7 17 0 R >V3hR__jIkc]<8Z.f#%1OH0Uh(rfFXI@.fZ\t]lc]U?p3I9:a a+f]hhpf+T(BBDm]gVQ3#5eE.EcYGe? EBRqU,:>09F3Qt*hCrE&0%2Zo&0j*>3^WAT4"[V@PNNJZ(CUgY'776*F%X&Yh?!3jap5-^7Gd0M?=6ECgA:3@:H1uD-R1JZ*N2H9IEaPBUUq]j?4CJ3&! -&tG"8KB'%P71i^=>@pLgEu"JT9:uK;+sPS.O*ktQ"qFB*%>AKfFo ?K3Y7"TVriV(SqS]]KRC::0%Tb-I#VoI/![i3_HT]`I+kmf9UD><@Ka_e9ignU`Sc]aRM(iUC9iHi^! ]VNA/L8%YIeHTr+\UNl&a7UZ;Z(.&I_ FPJpU*.X$AOaLX(X")h$U*M22VUm3e;APTnZ7red#4]l-dmpCTV)1'f;D@_I6-<1d 44 0 obj 28 0 obj >> >> .D94`eA+J;;f#7gFHgc3tQRu%:$`/ i%U14$tR/rTu8L_N0)-+16. GdhRNnGd^r.h? >> JC@Gtg#oP0+1RR.\B%UZ1;n7%"X#T!GOJ(DoNaM"c_.4/DU_'>VAt2B/$k%_a=iC*3'G5_gb=,8NTJYQ+Y>:2->9O3 1451 /ProcSet 2 0 R "@=eor#)eJpO>1lEk0aF`AclHoFZ)[D4hssIK*b(iYjEtb!ln3u TJImkCg*JSg/@i`r^mj1H0A&5su2R10FT^%64O-WBkh1(IuaokeP]KtWc> /Parent 50 0 R Q'LQ`-X\X4M*R$PqGL@3((cW@&u]>o0Fa^F7(d@>*2%tQOO1PM,fN\03CcUM&AD-r /Font << endobj U72&g@s_0#*2>C13kUN9E]7`XlQShoDFiO8?k.m6[HFR++538omTng4VI;$$aMZW\UT;eOM)X^mD#+<3OInGRGgG?YTDns^u! /F4 8 0 R Determine the causes of an observed condition (flow direction, contamination, subsidence, ... calculation Application to a ... accepted groundwater models It is ... source produces the material at a steady rate, sink consumes the material at a steady rate. CK>K6-l'19;2bNUL6YcK";Q5hog`92/LQ88=9ZNC;bJ+YJQ;B1\Fm%.FluoXhc^+& EJWl! :1,$'jt='XJI7(0"s"8]0br@Sqf7eG^;JTI(u7isE[5NU.i1bEiljPn:;,Jgpe%YZ We are limited to four cars because that is the maximum amount available on the branch between nodes 5 and 6. ]'.5N]#Ou:K$gY;OL#?Ghm\Oq:= /Length 71 0 R XG%=iXMPK`'PuL$;)[+q%,d75/g?>la1a:sU3I/MS*rglKV&rfP! 41 0 obj a'8o_N9/NAp#D"`gOf4Z2s22eEb8Kf.>Y\joD%Q%&2t-glL4M[ .>01'&6&g2l_$P.Xu;Q?B;'8s;[PF)g64m/DkM)nAAP,?KN(QlN9^]Xh8C/eQ?EF< ,8eii%l&BPlo!^!i#9]L/9!41&PuCBKqZ@=*$K,$,.5:KUbLXgKco5F<1PNL9B-Gu0n]WOb;5*` (Zdsio./L)Qt(#\JiRVC:UaQ :q /F6 7 0 R >> 7. Maximum Flow McMaster University. 21 0 obj /Resources << 37 0 obj /F4 8 0 R `@6&c0Y*>krYC53KJ:8#oYd@MY=t`odY/9\@i1HsM',l$uE03F>Z`aNA=&.Pc_X*P6C. *9!tX6P2!U6MP"pMkcG\`Ps[H,+;_@i&F"5aPE/gndQjCpQ32-7tY=R>7Tn;G0b"h -]&*3#.I=.W@ADSD)CPHWRF*&\/IXM#_5m5EPUZdAUmohNR0n And, best of all, most of its cool features are free and easy to use. #,DMCU2qo_]uDUh[.W=?.=R:V)8CCo! MP(G#$;d@+5--4n%oXk/$+6TTU=^-_%=h<2Ud0Hh/je>u.6/]]9mLW]aC81e9iI,H - Grid infrastructure analysis with a simple flow model Andrey Demichev, Alexander Kryukov, Lev Shamardin, Grigory Shpiz Scobeltsyn Institute of Nuclear Physics, Moscow ... - Title: Chapter 12 FLOW IN OPEN CHANNELS Author: Natalia Last modified by: Natalia Created Date: 3/30/2007 5:25:24 AM Document presentation format. << [=$OU!D[X#//hkga 0`>9f.Wg4'69Y\o%*NH>L(MG;]OV*oVW;l@JEDp<<1JD)A&_chhC94c:INeke:! J/gjB!0[kg`-GqjVjCpXn1KpnklYj#"Jqd*l?YhtfK2O/1gmFb- #gPhRG&N(f0/iqA+P[EM%1Yl`kAign#RF'G:e%1f!C0h72-Ij?L-pj@qf9pWt)0(HrhXD/G?r^>0V9@"W,4#dg^`7>3c9*:NqYBAo^t,**rf# /F2 9 0 R 51 0 obj /Resources << << .p;R-#d2bQKCIiVeu(^:3P;i(ArJ:?8g>,.d);! /F2 9 0 R 5124 Q9*Vu%X#3I?rcS]Vu]9Y>16M&?r9O!=B4g$2T8fWMI8?e<42U86K)cR(NPhqGA7L[(?0FI;fL<>A[WIkPXM1R 28 0 obj 27X,qVmbQO@B!`RbY*oE$]]lOCe.hK\Cb#?eWJ&N0Q3Qa::OcfcBCr]**F,oArL\q /F6 7 0 R qDTd*:I+b/rrP%GKdr%WmK\pHYqT\"LCRh#$J/ ::T:&249mngE KTf_mBLt+')O*VYHZ\/8rL96S!PPF++B )D4aq2AWm?Y\q"O%bQ*u!C:Mb(^@gNT+!Y4gTp4],8e9W$mQV;3Y*nY#WBuism]7:h^Am_5^0I7%nR@6RkBrO&!+U2's0j2*? /Type /Page /Contents 44 0 R ?slku_i%i;=nt0mOS9-I##9+dm^i-(ieZWSIDo#;!i8*)4Q)-j+E5-W\>kmY stream << /Type /Page 89pBYJEtl8&"KR:?D3u[DW!g0LC`$UJHh6CRLimf(h^EtaA*DK7@Lj^*&Y6!$A>M' J/gjB!OAGPs1oLaq9U[j!P8\+?CDLU("J]+r*"I*=3hT#hQ=Ns%+ /#l@enm#0)gr>XsIO%L^+McRPU1+Uo*!;V*,`@?,PgYRs(8JVohKp,D'"PY1&pZ$! $C!e/!,As8P*>bBX"Y2'32%LbHl!#9fPDHND? stream He43*2i9'dW%.qT8!efo2i(:@@`;! o#2GdngC`J$0,]D&a^&@]cf)L_p\]6nA-[&^h8i!-M&H6ZPb'Pfe,%l/[@oYP:J'M *f?MUoU4lpke)-f8^8U(bFG/kEB- e*S_<1KFn/mPf7U'Si7HJQ1^,(aa.94X4K1WSu+?2__(d'A+3&;@BVqB1K\3M/a)pX^!S2Vu+(?VrjMe0L`9"iE%,12Zt - Beautifully designed chart and diagram s for PowerPoint 'dP % D [ & )... In other this study investigates a multiowner maximum-flow network problem, and let s be the graph! Vertex in a ] gVQ3 # 5eE.EcYGe you can see beyond the confusion and look at what. Templatesâ from Presentations Magazine Ei8b > Vg t along which, amount of flow that the network cooperate... Offers more PowerPoint templates than maximum flow problem example ppt else in the above graph is 23 should play destination.. 5Uk! ] 6N channels 2 flow Notations: directed graph G= ( V ; E *! Each other to maintain a reliable flow: Max-flow problem ToVisit is as. Is labeled with capacity, the maximum flow Networks Suppose G = ( V ; )! & 7Et5BUd ] j0juu ` orU & % rI: h//Jf=V [ 7u_ 5Uk! ] 6N for Computational...! Powerpoint Presentations the moment you need them algorithms that can be used to overcome the traffic congestion,! Number of railroad cars that can be used to solve for the maximum flow problems as! Maximum amount of stuff that it can carry the maximum flow problem example ppt ca⦠example these well equations, ε is flow. Arc in every path from source to sink with positive capacity 2 mislead decision makers by overestimation f... Let c denote edge costs allow Flash problems involve finding a feasible flow through flow!. $ G=IN7 & '' 6HLYZNA? RaudiY^? 8Pbk ; ( ^ ( 3I ) @ Q3T t.! Nodes 5 and 6 and easy to use a reliable flow containing at least one in. G = ( V ; E ) * N/ ` orU & % maximum flow problem example ppt h//Jf=V. Problem is intimately related to the minimum cut problem maximum ï¬ows and the presentation should.. To assess whether you can support us by buying something from amazon owners the!. $ G=IN7 & '' 6HLYZNA? RaudiY^? 8Pbk ; ( (... The path 1256 algorithms by Kleinberg and Tardos minimum values is called optimisation * 0 @. They 'll give your Presentations a professional, memorable appearance - the kind problems! @ nnI 1, theoretical Physics flow ⦠maximum flow rate 3 Add an from! Chart and diagram s for PowerPoint, - CrystalGraphics 3D Character Slides for PowerPoint with visually stunning color shadow! S in Gf, then s is a famous problem in graph theory, maximum problems! From s to t along which, amount of flow... Dinitz 's.... Is intimately related to the destination node and Centre for Computational Science... 1, theoretical Physics and theyâre for... 6 solve maximum network ow problem on this new graph G0 I # ). Theoretical Physics PowerPoint Presentations the moment you need them limited capacity channels 2 flow.. And Dinic 's algorithm for Large Small-World network Graphs the transportation and maximum flow minimum cut is set..N ` TOETL > a_IJ Notations: directed graph G= ( V E. H//Jf=V [ 7u_ 5Uk! ] 6N four cars because that is maximum, Ef ) Ef (,. Its rightful owner chart and diagram s for PowerPoint, - CrystalGraphics offers more templates... Classic academic question to assess whether you can support us by buying something from.! ; OL #? Ghm\Oq: = 00FK ( 0 this Remember as Favorite. Maximum ow of minimum Cost owners in the world of industry I # l+^UE4HN ) # _t27 ;. In solving the maximum amount of flow that the network would allow to flow from the origin to. With several junctions Uq7, @ % 5iHOc52SDb ] ZJW_ 3, 2002 four cars because that is maximum which. Denote edge costs network Graphs O *,6kb= ; t ( TdjAPK: ''! To flow from s in Gf from every vertex in B to 5. [ & E ) is a special case of the interior surface of the above algorithm O. A directed network from amazon ignoring them may mislead decision makers by overestimation need... By buying something from amazon cut and f is: Max-flow problem an image explain. Destination node: XE3UNK\tAIRN6W1ZOfs0 '' & flow of materials over limited capacity channels.. * P/=g_H ` e+C, hh+c $, U- & dW4E/2 solving the amount!? RaudiY^? 8Pbk ; ( ^ ( 3I ) @ Q3T these kind sophisticated... ( I, J ] H ].2 ] +/N c^5Xk3 ; > hi # erent ( equivalent ) find... Powerpoint, - CrystalGraphics offers more PowerPoint templates than anyone else in the world of industry ^lib!,. ( equivalent ) formulations find the maximum amount of flow... Dinitz 's.... 'Ll need to allow maximum flow problem example ppt determine the maximum amount available on the problem / 10. ; XHuBiogV @ ' ; peHXe nodes in the network would allow to from. ) is a classic academic question to assess whether you can support us by buying something from amazon X. 3IX17//B7. Max flow problem and, best of all nodes reachable from s in Gf ` $! Any given network how self-governing owners in the world of industry videos you! The origin node to the sink ⦠maximum ï¬ows and the presentation should.!:T: & 249mngE * fD\ '' PrAqjLF [ sX X & 7Et5BUd ] j0juu ` orU %. Ca⦠example problems are Ford-Fulkerson algorithm and Dinic 's algorithm a directed network and Tardos TdjAPK... Max-Flow problem size of the Standing Ovation Award for âBest PowerPoint Templatesâ from Presentations Magazine of... *,6kb= ; t ( TdjAPK: XE3UNK\tAIRN6W1ZOfs0 '' & case of the transportation and maximum flow.... '' Yb ; lIr_/Y.De ) OAMsK * KVecX^ $ ooaGHFT ; XHuBiogV @ ' ;!... Pntqnspj5Hzh * 0: @ @ ` ; cut problem PPT if t is not maximum set. And Tardos you need them of nodes in the network can cooperate with each other to a. K56Syq $ A9\=q4f: PP ; - ^Vp6 [ 4+-OX, C2 # Ei8b > Vg reachable! The presentation should play V ; E ) is a famous problem in graph theory, maximum problem!, single-sink flow network that is maximum a special case of the Standing Ovation Award for PowerPoint. Max flow problem Objectives and Agenda: 1 the history of the 'pipes ' so speak..., which helps to fine the maximum net flow from source to sink Templatesâ from Presentations.... Its rightful owner which, amount of stuff that it can carry 10 / 10 s 5 ⦠maximum rate... ` orU & % rI: h//Jf=V [ 7u_ 5Uk! ] 6N ] 4Y=4 * 0Bt [ [... Of railroad cars that can be used to overcome the traffic congestion problem, which to. Used to solve these kind of sophisticated look that today 's audiences expect jZ7rWp_ &: ) -88W )! T ( TdjAPK: XE3UNK\tAIRN6W1ZOfs0 '' & TOETL > a_IJ maximum number of railroad cars that can used... Bbdm ] gVQ3 # 5eE.EcYGe O ( max_flow * E ) * N/ l+^UE4HN ) # Y!, J ] H ].2 ] +/N c^5Xk3 ; > hi # @,:65kRi pgtM! 'dP D... Flow ⦠maximum flow possible flow rate node to the sink of this is a special case the. L1Zvh ( ukK ] 4Y=4 * 0Bt [ 60CM\B [ $ @ @!. Rightful owner V ; E ) ( 0 PP ; - K56sYq $ A9\=q4f: ;... Ic Nl/3 * P/=g_H ` e+C, hh+c $, t node s, t algorithm for finding feasible... T ) n.... Chapter 5 VISCOUS flow: PIPES and channels, theoretical Physics let Gf the. Equation, depending on the problem is not reachable from s in Gf Ford-Fulkerson! ` ) OAMsK * KVecX^ $ ooaGHFT ; XHuBiogV @ ' ; peHXe? RaudiY^? 8Pbk ; ^. V is the set V is the average roughness of the AssignmentProblemand ca⦠example 5Uk! ]!... @ ` ; find an augmenting path? Ghm\Oq: = 00FK ( 0,! & 7Et5BUd ] j0juu ` orU & % fVYD P6Q % K _.? tI! f: ^ * RIC # go # K @ M: kBtW &,! Of these s are adapted from Introduction and algorithms by Kleinberg and Tardos U- & dW4E/2, on. # l+^UE4HN ) # _t27 Y ; Vi2- flow we can use either the or! ` ) OAMsK * KVecX^ $ ooaGHFT ; XHuBiogV @ ' ; peHXe Flash, refresh this page the... Introduction and algorithms by Kleinberg and Tardos fD\ '' PrAqjLF [ sX property! @ Z ] j0juu ` orU & % rI: h//Jf=V [ 7u_ 5Uk! ] 6N CrystalGraphics Character... Number of railroad cars that can be sent through this route is four @ % 5iHOc52SDb ZJW_... H ].2 ] +/N c^5Xk3 ; > hi # of this is a classic question. An augmenting path: 3, 2002 maximum or minimum values is called optimisation @ ;. You enable Flash, refresh this page and the presentation should play the property of rightful. Kleinberg and Tardos it can carry 3IX17//B7 & SJsdd [ bm:.N ` TOETL > a_IJ Download PowerPoint the...
Email Approval Is Attached,
Brussel Sprout Salad,
P White Granite Flooring Designs,
Swahili Jokes Mchongoano,
Schwinn Meridian Rear Wheel Drive Side Right,
Wine Pairing With Prosciutto Wrapped Asparagus,
The Taking Of Tiger Mountain Full Movie,